

GCE A LEVEL MARKING SCHEME

AUTUMN 2020

A LEVEL
CHEMISTRY – COMPONENT 3
A410U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE A LEVEL CHEMISTRY COMPONENT 3

CHEMISTRY IN PRACTICE

AUTUMN 2020 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only
ecf = error carried forward
bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

	0	-4!				Marks a	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1	(a)		D methylpropan-2-ol (1) H pentanenitrile (1)	2			2		
	(b)	(i)	award (1) for correctly drawn structures of both optical isomers of CH ₃ CH(CN)CH ₂ CH ₃ CH ₃ CH CH CH CH CH CH CH CH CH CH		1		1		
		(ii)	they rotate the plane of plane polarised light in opposite directions	1			1		
		(iii)	award (1) for reagent and (1) for product e.g. (reduction with) LiAlH ₄ (1) to form CH ₃ CH(CH ₂ NH ₂)CH ₂ CH ₃ (1) (hydrolysis with) HCl (1) to form CH ₃ CH(COOH)CH ₂ CH ₃ (1) (hydrolysis with) NaOH (1) to form CH ₃ CH(COONa)CH ₂ CH ₃ (1)		2		2		2

Compounds CH ₃ CH ₂ CH ₂ CH ₂ OH and CH ₃ CH ₂ CH ₂ CH ₂ Br	Reagent(s) and condition(s) acidified dichromate(VI)	Observation(s)	Organic compound(s) formed	AO1	AO2	AO3	Total	Maths	Prac
CH ₃ CH ₂ CH ₂ CH ₂ OH	condition(s) acidified dichromate(VI)	Observation(s)	formed						
and	dichromate(VI)		011 011 011 0110						
	dichromate(VI)		CH ₃ CH ₂ CH ₂ CHO						
CH3CH2CH2CH2Br	/ heat (reflux)	orange to green solution	or						
	, riout (ronax)		CH ₃ CH ₂ CH ₂ COOH						
CH ₃ CH ₂ CH ₂ CHO	Tollens' reagent (alkaline solution of ammoniacal silver nitrate)	silver mirror	CH₃CH₂CH₂COOH						
(CH₃)₃COH	warm gently in hot water bath			4	4		8		4
CH3CH2CH2COOH	I ₂ / NaOH(aq)		CHI ₃		•				
and	or	yellow solid	and						
CH ₃ CH ₂ CH(OH)CH ₃	KI / NaClO(aq)		CH₃CH₂COONa						
CH ₃ CH ₂ CH ₂ CH ₂ NH ₂	nitric(III) acid (HNO ₂)								
and CH ₃ CH ₂ CH ₂ CH ₂ CN	room temperature	bubbles of gas	CH ₃ CH ₂ CH ₂ CH ₂ OH						
	and (CH ₃) ₃ COH CH ₃ CH ₂ CH ₂ COOH and H ₃ CH ₂ CH(OH)CH ₃ H ₃ CH ₂ CH ₂ CH ₂ NH ₂ and H ₃ CH ₂ CH ₂ CH ₂ CN ard (1) for each re	solution of ammoniacal silver nitrate) (CH ₃) ₃ COH warm gently in hot water bath CH ₃ CH ₂ CH ₂ COOH and or H ₃ CH ₂ CH(OH)CH ₃ H ₃ CH ₂ CH ₂ CH ₂ NH ₂ and room temperature	solution of ammoniacal silver nitrate) (CH ₃) ₃ COH warm gently in hot water bath CH ₃ CH ₂ CH ₂ COOH and or yellow solid H ₃ CH ₂ CH ₂ CH ₂ NH ₂ and h ₃ CH ₂ CH ₂ CH ₂ NH ₂ and room temperature ard (1) for each reagent with conditions, for each	solution of ammoniacal silver nitrate) (CH ₃) ₃ COH warm gently in hot water bath CH ₃ CH ₂ CH ₂ COOH and or yellow solid and H ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Ard (HNO ₂) and bubbles of gas CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH and room temperature ard (1) for each reagent with conditions, for each observation and for	solution of ammoniacal silver nitrate) (CH ₃) ₃ COH warm gently in hot water bath CH ₃ CH ₂ CH ₂ COOH and or yellow solid and H ₃ CH ₂ CH ₂ CH ₂ CH ₂ CN and H ₃ CH ₂ CH ₂ CH ₂ CN and h ₃ CH ₂ CH ₂ CH ₂ CN and h ₃ CH ₂ CH ₂ CH ₂ CH ₂ CN and h ₃ CH ₂ CH ₂ CH ₂ CH ₂ CN and temperature ard (1) for each reagent with conditions, for each observation and for	solution of ammoniacal silver nitrate) (CH ₃) ₃ COH warm gently in hot water bath cH ₃ CH ₂ CH ₂ COOH and or yellow solid and H ₃ CH ₂ CH ₂ CH ₂ COONa H ₃ CH ₂ CH ₂ CH ₂ CNb and h ₃ CH ₂ CH ₂ CH ₂ CH ₂ CONa h ₃ CH ₂ CH ₂ CH ₂ CH ₂ CN bubbles of gas CH ₃ CH ₂ CH ₂ CH ₂ OH and room temperature ard (1) for each reagent with conditions, for each observation and for	solution of ammoniacal silver nitrate) (CH ₃) ₃ COH warm gently in hot water bath CH ₃ CH ₂ CH ₂ COOH ith ₃ CH ₂ CH ₂ COOH and or yellow solid and H ₃ CH ₂ CH ₂ CH ₂ NH ₂ and h ₃ CH ₂ CH ₂ CH ₂ NH ₂ and room H ₃ CH ₂ CH ₂ CH ₂ CN temperature ard (1) for each reagent with conditions, for each observation and for	and solution of ammoniacal silver nitrate) (CH ₃) ₃ COH warm gently in hot water bath cH ₃ CH ₂ CH ₂ COOH	Solution of ammoniacal silver nitrate) (CH ₃) ₃ COH warm gently in hot water bath CH ₃ CH ₂ CH ₂ COOH and or yellow solid and H ₃ CH ₂ CH(OH)CH ₃ KI / NaClO(aq) H ₃ CH ₂ CH ₂ CH ₂ CH ₂ CN and room th ₃ CH ₂ CH ₂ CH ₂ CN temperature ard (1) for each reagent with conditions, for each observation and for

Oue	ntion .	Movking detaile	Marks available							
Ques	Stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
(d)	(i)	reflux in the presence of concentrated sulfuric acid	1			1		1		
	(ii)	$CH_3CH_2COOH + CH_3CH_2CH(OH)CH_3 \\ \rightleftharpoons CH_3CH_2CH_2COOCH(CH_3)CH_2CH_3 + H_2O$			1	1				
	(iii)	(addition of sodium carbonate to neutralise acid and) distillation		1		1		1		
		Question 1 total	8	8	1	17	0	8		

	0	-4!		Man	-!	_					Marks a	vailable		
	Que	stion		iviar	king detail	S			AO1	AO2	AO3	Total	Maths	Prac
2	(a)		add further sodium will form	carbonate s	olution to th	e filtrate an	d no precip	itate			1	1		1
	(b)		2H ⁺ + CO ₃ ^{2−} → H	₂ O + CO ₂					1			1		
	(c)	(i)		Titration 1	Titration 2	Titration 3	Titration 4							
			Initial burette reading / cm ³	0.50	18.45	2.10	19.70							
			Final burette reading / cm ³	18.45	35.95	19.70	37.25			2		2		2
			Titre / cm ³	17.95	17.50	17.60	17.55			۷		2		
			all titres calculated a		-	(1)								
		(ii)	titration 2 smallest volume (of	HCI) therefo	ore <u>largest </u>	<u>percentage</u>	<u>error</u>				1	1		1

0					Marks a	vailable	able		
Question	Marking details		AO1	AO2	AO3	Total	Maths	Prac	
(d) (i)		Correct order							
	Calculate the number of moles of HCl used in the titration of 25.0 cm ³ of solution Y	2							
	Calculate the number of moles of CO ₃ ²⁻ that reacted with 200 cm ³ of solution Y	4							
	Use the balanced equation to calculate the number of moles of unreacted CO ₃ ²⁻ in 200 cm ³ of solution Y	3							
	Calculate the concentration of the barium chloride solution in g dm ⁻³	5							
	Calculate the total number of moles of CO ₃ ²⁻ added to the 50.0 cm ³ of barium chloride solution	1			1	1		1	
	award (1) for correct sequence								
	accept alternative order 1 4 2 5 3								

Quanties	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(ii)	total mol CO ₃ ²⁻ added = $\frac{50 \times 0.506}{1000}$ = 0.0253 (1) mol HCl in mean titre = $\frac{17.55 \times 0.200}{1000}$ = 0.00351 (1) mol unreacted CO ₃ ²⁻ in 200 cm ³ of solution Y $\frac{0.00351 \times 8}{2}$ = 0.0140 (1) mol CO ₃ ²⁻ reacted with 200 cm ³ of solution Y 0.0253 - 0.0140 = 0.0113 (1) [BaCl ₂] = $\frac{0.0113}{\frac{50}{1000}}$ = 0.226 mol dm ⁻³ 0.226 × 208 = 47.0 g dm ⁻³ (1)		5		5	4	
(iii)	mass BaCO ₃ = $0.226 \times \frac{50}{1000} \times 197 = 2.23$		1		1	1	
	Question 2 total	1	8	3	12	5	5

	0	4!	Moulding datable			Marks a	vailable		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
3	(a)		award (2) for any three of following conclusions leading to identification of X as magnesium award (1) for any two conclusions						2
			 high melting temperature of oxide and chloride ⇒ ionic compounds basic oxide (not amphoteric) ⇒ oxide of metal insoluble carbonate ⇒ not Group 1 metal hydroxide and carbonate are both white ⇒ not transition metal white precipitate with hydroxide which is insoluble in excess ⇒ Mg no precipitate with sulfate ⇒ Mg 			2			
			award (1) each for ionic equations						
			$Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_2(s)$ $Mg^{2+}(aq) + CO_3^{2-}(aq) \rightarrow MgCO_3(s)$	2			4		
			accept without state symbols						

Overtion				Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)	 award (2) for any three of following conclusions award (1) for any two conclusions no reaction with acids/alkalis ⇒ not a metal oxide high melting temperature of oxide ⇒ oxide has giant molecular structure low boiling temperature of chloride ⇒ chloride has simple covalent structure oxide has giant molecular structure and chloride has simple covalent structure ⇒ metalloid / Group 4 element misty fumes and white precipitate with water ⇒ Si 			2			2
	333 K and 1.01 × 10 ⁵ Pa (1) from $pV = nRT$ $n = \frac{1.01 \times 10^5 \times 805.5 \times 10^{-6}}{8.31 \times 333} = 0.0294$ (1) $M_{\rm f} = \frac{5.000}{0.0294} = 170.1 \Rightarrow \text{chloride is SiCl}_4 / \textbf{Y} \text{ is silicon (1)}$ $\text{award (1) for either equation}$ $\text{SiCl}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 4\text{HCl}$ $\text{SiCl}_4 + 4\text{H}_2\text{O} \rightarrow \text{Si(OH)}_4 + 4\text{HCl}$	1	3		6	3	
	Question 3 total	3	3	4	10	3	4

	0	-4!	Maultina dataila			Marks a	vailable		
	Ques	Stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(a)	(i)	award (1) for either of following use gas syringe to measure increase in gas volume over time measure loss in mass over time allow sample at intervals, quench and titrate [credit only in (i) or (ii)]		1		1		1
		(ii)	award (1) for basic method e.g. colorimetry / follow change in colour over time sample at intervals, quench and titrate award (2) for more detailed method e.g. follow change in colour <u>due to change in iodine concentration</u> over time sample at intervals, quench and titrate (iodine) <u>against sodium thiosulfate solution</u>		2		2		2

0	4!			B# - ul-:	o detelle			Marks a	vailable		
Que	estion			Warki	g details	AO1	AO2	AO3	Total	Maths	Prac
(b)	(i)	I	award (1) fo	or all four rates calcula	ed						
			Expt	Rate / s ⁻¹							
			1	2.98 × 10 ⁻³			1		1	1	
			2	1.19 ×10 ⁻²			-				
			3	2.38 ×10 ⁻²							
			4	5.95 × 10 ^{−3}							
		II	1 st order wi when 2 nd order wi when	th respect to Br⁻(aq) n [Br⁻] halves (expt 2 ⇔ ith respect to H⁺(aq)	2 ⇒ 3), time halves / rate doubles (1) 4), time doubles / rate halves (1) 2), time reduces by a factor of 4 / (1)			3	3	2	
		III		O ₃ -][Br-][H+] ² e from part II			1		1		

0.					Mar		11-				Marks a	vailable		
Q	uestion				iviar	king deta	IIS		AO1	AO2	AO3	Total	Maths	Prac
		IV	equation -	f the power this reaction le from par	on is overa	ll fourth or	centrations in the r der	rate	1			1		
		٧	[BrO ₃ -], [B	sr⁻] and [H⁺]	calculated	d for any of	experiments 1-4	(1)						
			Expt	[BrO ₃ ⁻]	[Br]	[H+]	Rate / s ⁻¹							
			1	0.05	0.25	0.30	2.98 ×10 ⁻³							
			2	0.05	0.25	0.60	1.19 ×10 ⁻²							
			3	0.10	0.25	0.60	2.38 ×10 ⁻²							
			4	0.05	0.125	0.60	5.95 × 10 ^{−3}				4	4	4	
			$k = \frac{r}{[BrO_3^-]}$ $k = 2.64$ ecf possib	award	(1) for cor	swer to 3 s rect answe	ig figs er not to 3 sig figs							

Overtion				Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
VI	[BrO ₃ -] (1)						
	[H+]			2	2	2	
	(1)						

Overtion		Marks available						
Question	Marking details		AO2	AO3	Total	Maths	Prac	
(ii)	Indicative content							
	 Find time taken for methyl orange indicator to be bleached at a number of different temperatures Initial reactant concentrations remain unchanged across all experiments Calculate the rate at each temperature Calculate the rate constant, <i>k</i>, at each temperature Plot In <i>k</i> against ¹/_T where <i>T</i> is temperature in Kelvin Arrhenius equation k = Ae ^{-Ea}/_{RT} Arrhenius equation rearranged ⇒ In k = In A - ^{Ea}/_{RT} Gradient of straight line ⇒ m = - ^{Ea}/_R Calculate E_a 		3	3	6	3	3	

Question	Maulina dataila	Marks available							
	Marking details		AO2	AO3	Total	Maths	Prac		
	5-6 marks Clear outline of how data is processed; good understanding of relationship between graph and Arrhenius equation The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary is used accurately throughout. 3-4 marks Good knowledge of practical steps; basic understanding of data processing; some idea of link between graph and Arrhenius equation The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.								
	 1-2 marks Some knowledge of practical steps; some idea of data processing The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and vocabulary. O marks The candidate does not make any attempt or give an answer worthy of credit. 								
	Question 4 total	1	8	12	21	12	6		

COMPONENT 3: CHEMISTRY IN PRACTICE

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
1	8	8	1	17	0	8
2	1	8	3	12	5	5
3	3	3	4	10	3	4
4	1	8	12	21	12	6
Totals	13	27	20	60	20	23